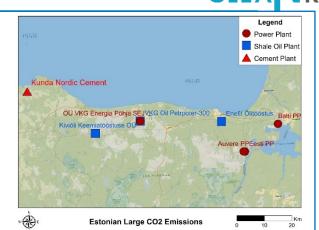
CLEAN clinKER by calcium looping or low-CO₂ cement

CLEANKER

Techno-economic modelling of the Baltic CCUS onshore scenario


Alla Shogenova, Kazbulat Shogenov and Ka Mai Uibu and Rein Kuusik, Tallinn University of Technology, Departme r, Tallinn University of Technology, Department of Geology

terials and Environmental Technology

Introduction

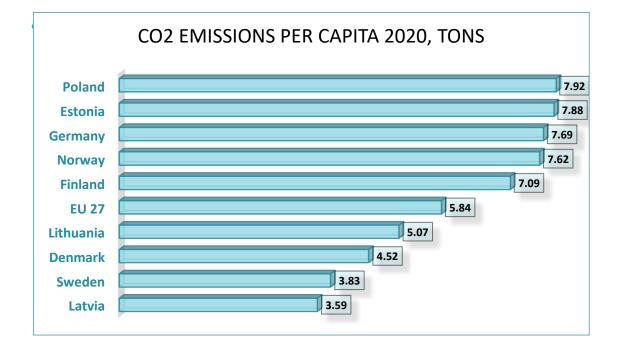
- Baltic regional onshore scenario included Kunda Nordic Tsement (KNC), main Estonian cement producer, and CO₂ mineral carbonation of the oil shale ash, as possible CO₂ use option (Shogenova et al, 2019, 2021).
- Total CO₂ emissions per capita (14.2 t) produced in Estonia in 2019 was at the second place in Europe (after Luxemburg).
- Nearly 50% of the total fossil fuel emissions (7.9 Mt) were produced by 8 largest emission sources. (All CO₂ emission data for plants are obtained from EU ETS)
- CO₂ emissions produced in Estonia in 2019 were lower compared to 2018, after closing of some blocks at the Eesti Energia power.
- Large CO₂ emissions decreased again in 2020 for 2.7 Mt, caused by decrease of energy and no clinker production.
- In the end 2021 Estonia increased again energy production from oil shales, but it did not help to decrease high energy prices during energy crisis started at the end of 2021.
- CO₂ emissions produced in 2019 were used for techno-economic modelling of the Baltic CCUS scenario.
- Our scenario demonstrates how to continue using local Estonian oil shale for energy production, to get revenues, to safe economic and energy independency and to stop CO2 leakage to the countries supporting Estonia with energy and clinker.

			0021-1			
Name of	Company			(Mt/year)		
the Plant	owner	2017	2018	2019	2020	2021
Eesti PP	Eesti Energia	8.36	7.76	3.43	1.65	2.61
Auvere PP	Eesti Energia	1.36	1.52	0.65	0.8	0.89
Balti PP	Eesti Energia	1.6	1.13	0.92	0.4	0.65
Enefit Õlitööstus (shale oil)	Eesti Energia	0.82	0.84	0.84	0.8	0.79
VKG Oil Petrpoter- 300 (shale oil)	Keemia	0.594	0.67	0.72	0.72	0.7
North PP	VKG Energia	0.6	0.59	0.68	0.63	0.6
Kunda Nordic Tsement	Heidelber g Cement Group	0.56	0.55	0.55	0.04	Account closed
Kiviõli Keemia	Alexela Group	0.15	0.15	0.17	0.17	0.16
	Total for Estonia	14.03	13.2	7.94	5.21	6.4

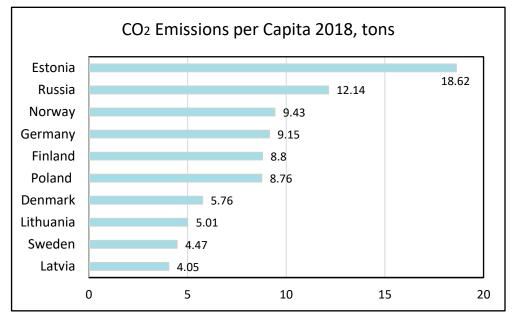
CO2 emissions in the BSR

TOTAL CO2 EMISSIONS 2020, MT	Total Fossil CO2 emissions, Mtons (2018)
Germany 644.3 Poland 299.6 Norway 41.3 Finland 39.3 Sweden 38.6 Denmark 26.2 Lithuania 13.8 Estonia 10.45 Latvia 6.77	Russia 1748.4 Germany 752.7 Poland 333.9 Belarus 64.3 Norway 50.5 Finland 48.9 Sweden 44.6 Denmark 33.1 Estonia 24.3 Lithuania 14.4 Latvia 7.8 0 200 400 600 800 1000 1200 1400 1600 1800

Data from: https://ourworldindata.org/co2-emissions#per-capita-co2-emissions


Data from:

EC JRC EDGAR - Emissions Database for Global Atmospheric Research; 2020.



4

Data from: https://ourworldindata.org/co2-emissions#per-capita-co2-emissions

Data from:

EC JRC EDGAR - Emissions Database for Global Atmospheric Research; 2020.

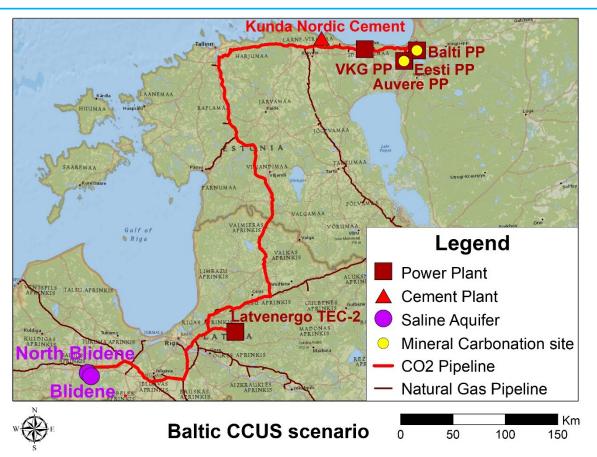
Techno-economic modelling of the Baltic CCUS onshore scenario

Scenario includes: 6 plants and Mineral Carbonation from 3 plants

Baltic transboundary CCUS scenario includes:

- CO₂ emissions from six largest CO₂ producers from **Estonia and Latvia**
- CO₂ mineral carbonation (MC) of Estonian oil shale ash (OSA) produced by 3 power plants
- pipeline transport of captured and compressed CO₂
- storage of compressed CO₂ in the North-Blidene structure in the western Latvia.

The cluster of CO₂ emitters:


- HCG Kunda Nordic Cement (KNC)
- **Eesti Energia power plants (PP):**
 - Eesti
 - Balti
 - Auvere
- VKG Energia North PP
- Latvenergo TEC-2 PP

BCF2022 - Kaunas, 13-14 October

Baltic CCUS scenario 50 100 150 Fig 1. Baltic CCUS scenario for six CO2 emission sources, mineral carbonation and storage in North-Blidene storage site

5

CLEAN clinKEE by cal-

ER

Data and methods

- Data were collected into ArcGIS database.
- Building block datasets were used to estimate costs for CO₂ transport and storage (EPRI, 2015, Shogenova & Shogenov 2018)
- All costs were calculated proportionally to CO₂ flow of the plants

Estimated earlier costs were applied

- CO₂ capture and compression: 25.5 and 2.8 €/t CO₂ (Shogenova et al, 2011)
- Direct MC of CO₂ captured by OSA from flue gas 15 €/t CO₂ [4]
- EU Emission Allowance Price was considered 40 Euro/t CO₂

Applied parameters

- > Capital charge rate : 8%
- Interest during construction (2 years): 1.5%.
- Annual fixed O&M cost :
- ➤ 1% for pipelines
- > 2% for wells
- 4% for the booster pumps and storage facilities
 Annual onsite operating costs (design, engineering, environmental assessment, supervision, management, logistics and equipment/project contingencies): 40% from
 Bare Erected Cost for transport and storage
- Decommissioning: 25% from Total Plant Cost (2 years following the end of the project, may include costs for site remediation and equipment dismantling)

Techno-economic modelling of the Baltic CCUS onshore scenario

The average cost per ton of CO₂ injected, or per ton of CO₂ avoided for the project duration (30-years) is calculated using below formulas (EPRI, 2015):

•
$$\mathbf{CAPEX}/t_{CO_2} = \frac{CCRxTPC + FOM}{CO_2 \text{ injected}}, (\pounds/t \ \mathbf{CO}_2), \ \mathbf{OPEX}/t_{CO_2} = \frac{CCRxCOSToper}{CO_2 \text{ injected}}, (\pounds/t \ \mathbf{CO}_2)$$

•
$$\text{MVEX}/t_{CO_2} = \frac{\text{COSTmv}}{\text{CO_2 injected}}$$
, ((Classical CO_2) , $\text{ENEREX}/t_{CO_2} = \frac{\text{COSTenergy}}{\text{CO_2 injected}}$, ((Classical CO_2))

•

- COSTtotal/ t_{CO_2} = CAPEX/ t_{CO2} + OPEX/ t_{CO2} + MVEX/ t_{CO2} + ENERGEX/ t_{CO2} ; TPC = BEC + Decom + interest
- $CAPEX/t_{CO_2}$ total capital expenses (pipeline, booster, wells or/and storage facilities) per one tonne of CO₂ injected/avoided during project duration
- OPEX/ t_{CO_2} operational and maintenance expenses per one tonne of CO₂ injected/avoided during project duration
- $MVEX/t_{CO_2}$ monitoring and verification expenses per one tonne of CO₂ injected/avoided during project duration
- ENEREX/ t_{CO_2} energy expenses per one tonne of CO₂ injected/avoided during project duration
- COSTtotal/ t_{CO_2} total transport and storage costs per one tonne of CO₂ injected/avoided during project duration
- CCR capital charge rate (%), TPC total plant cost = BEC + decom + interest, BEC bare erected cost for pipeline, booster, wells or/and storage facilities
- Decom decommissioning cost, Interest interest paid during construction, FOM annual fixed operating and maintaining cost (Euro/year)

Techno-economic modelling of the Baltic CCUS onshore scenario

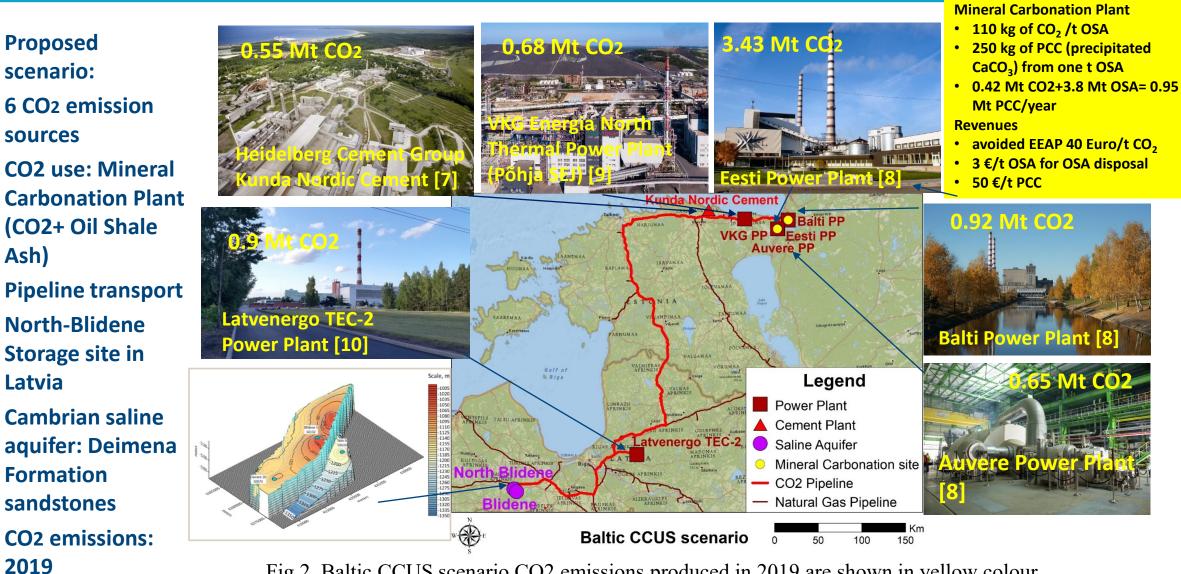
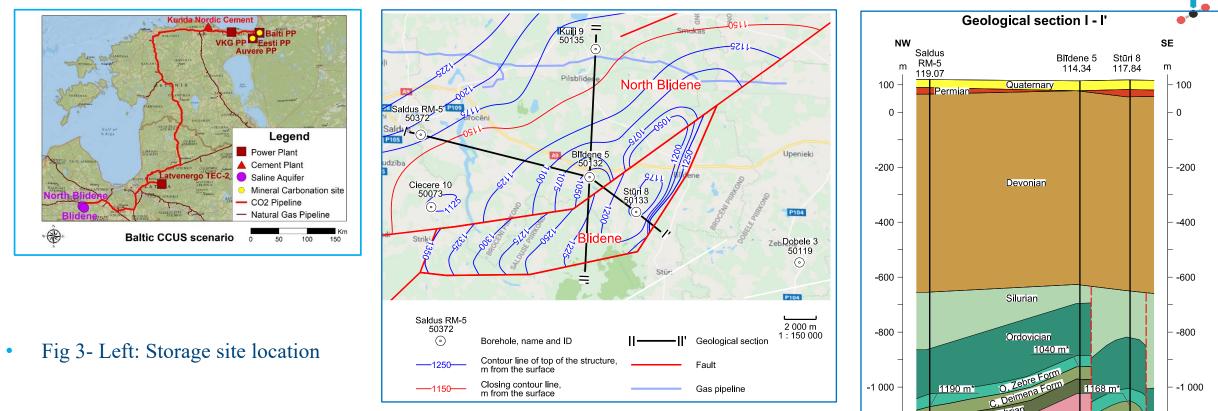



Fig 2. Baltic CCUS scenario.CO2 emissions produced in 2019 are shown in yellow colour

Ash)

CO2 storage site: Blidene and North-Blidene structure in the Western Latvia

- Fig 4 Centre: Structure map of the top o the Cambrian Series 3 Deimena Formation sandstones in the North Blidene and the Blidene structures. Base map is from the Google Maps, 2018 (Simmer, 2018).
- Fig 5 -Right: Geological sections across line I-I' shown at the Fig.4.
- The map and section are composed using Bentley PowerCivil for Baltics V8i (SELECTseries 2) software (Simmer, 2018).

Framework Programme of the European Union

-1 200

-1 400

Lower Ordovician

Zebre Formation Cambrian Series 3

Deimena formatio

Faul

Basement

Borehole name

Depth, m

2 000 m H 1 : 150 000 V 1 : 10 000

altitude from the sea level.

layer from the surface, m

Depth of the top of the Cm,dm

1300.5 m

1 312 n

Zebre Form,

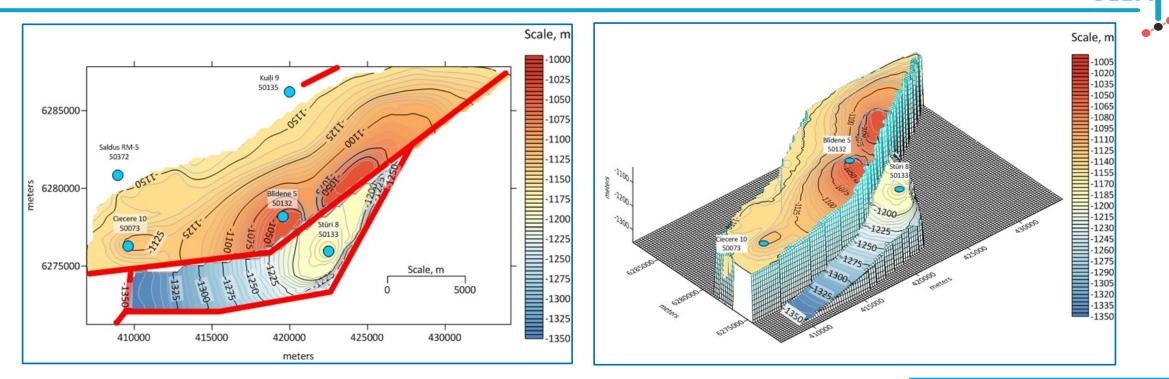
C. Deimena Form.

-1 200

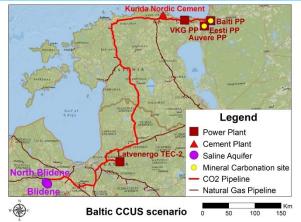
1333.5 m

Blīdene 5

114.34


1300.5 m

1208 m *


OLEAN clinKEE by calcium looping for low-C0, cement

CLEA

CO2 storage site: Blidene and North-Blidene structure in the Western Latvia

- Fig 1. Left: Contour maps of the top o the Cambrian Deimena Formation in the North Blidene (left) and the Blidene (right) structures. Fault line is indicated with red polyline;
- Right: 3D structure maps of the Deimena Formation in the North Blidene (above) and the Blidene (below) structures. Both pictures are composed using Golden Surfer 15 software (Simmer, 2018).

OF FAN clinKER by calcium Inoping for low-CO, cement

CLE

Parameters of the Cambrian Deimena Formation Reservoir sandstones in the storage structure

Parameters	North Blidene	Blidene
Depth of reservoir top, m	1035-1150	1168-1357
Reservoir thickness, m	48	66
Trap area, km ²	141	62
CO ₂ density, kg/m ³	881	866
Net to gross ratio, %	75	80
Salinity, g/l	100-114	100-114
Permeability, mD	370-850	370-850
Τ, ≌C	18	22.9
Storage efficiency factor (S _{eff}) Optimistic/Conservative (%)	30/4	5/3
Porosity (min-max/avg), %	12.5-25.6/20	13.5-26.6/21
Optimistic CO ₂ storage capacity (min-max/avg), Mt	167-342/267	19-37.5/29.6
Conservative CO ₂ storage capacity (min-max/avg), Mt	22.2-45.5/35.6	11.4-22.5/17.8

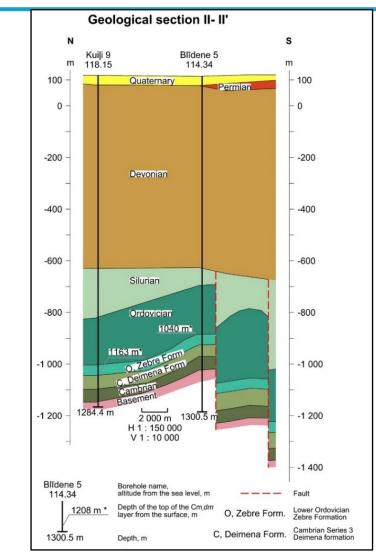


Fig 5. Geological sections of the Blidene and North-Blidene structure across line II-II' shown at the Fig.4.

CO2 Use for Mineral Carbonation (MC) of the Oil Shale Ash (OSA)

- In 2019 oil shale production decreased to 12 Mt (16 Mt in 2018) and of oil shale ash to 6.5 Mt (9.4 Mt in 2018).
- Eesti Energia plants produced about 3.9 Mt of OS ash in 2019 and used 1.8% for construction and agriculture (Eesti põlevkivitööstuse aastaraamat 2019).
- Estonian burnt oil shale could be used as an effective sorbent in the CO₂-mineralization process, binding in a range of 0.043-0.18 kg CO₂ per kg of waste (average 0.092 kg CO₂).
- It was estimated that **3.81 Mt** of OSA produced at 3 largest Eesti Energia PP could be used for CO₂ MC annually.
- In average **250 kg of PCC** (precipitated CaCO₃) could be produced from t/OSA.
- Annually **3.81Mt*0.25=0.95 Mt of PCC** could be produced,
- 28.6 Mt during 30 years.
- 110 kg of CO₂ per/ton OSA could be avoided
- Annually **3.81 Mt*0.11=0.42 Mt** of CO₂ could be carbonated (avoided),
- **12.6 Mt CO₂ avoided per 30** years.
- Considering that only 90% of CO₂ could be captured from flue gas, 0.47 Mt of produced CO₂ should be could be used for MC per year.

CLEAN clinKEE by calciu

CO₂ emissions produced, captured and avoided from six Baltic plants.

Location			Latvia	Total				
Company	Heidelb erg Cement	erg (Enefit Energia)			VKG Energia	Total for 5 Estonian	Latvenergo	Estonian- Latvian
Plant Parameters	КИС	Eesti PP	Auvere PP	Balti PP	North PP	plants	TEC2 PP	scenario
CO ₂ emissions produced per year in 2019, Mt	0.55	3.43	0.65	0.92	0.68	6.23	0.90	7.13
CO ₂ use for mineral carbonation, Mt		0.47				0.47		0.47
CO ₂ emission captured per year (95%)	0.52	2.81	0.62	0.87	0.65	5.47	0.85	6.33
CO ₂ emission produced during capture and storage (5%)	0.03	0.14	0.03	0.04	0.03	0.27	0.04	0.32
CO ₂ emissions avoided per year, Mt	0.49	2.67	0.59	0.83	0.61	5.20	0.81	6.01
CO ₂ emissions avoided per 30 years, Mt	14.8	80.1	17.6	24.9	18.4	155.9	24.3	180.2
CO ₂ emissions per year avoided, % from total	8.2	44.5	9.8	13.8	10.2	86.5	13.5	100

CLEA KER CO₂ pipelines parameters and costs (*total for 3 Eesti Energia

CLEAN clinKEE by calci looping for low-CO, cer

- The pipelines will be designed using X70 steel and 1500 lb flange rating (rated to 25.5 Mpa upper working pressure) with a maximum allowable working pressure of 15 MPa.
- The pipeline diameter was determined depending on the distance and flow rate of CO_2 calculated for the specific scenario according to (EPRI, 2015).
- The annual flow rate for the local pipelines from KNC and VKG Energia North plants and Latvenergo TEC2 is less than 1 Mt per year and distance to the shared (common) pipeline is 3.5-24 km. Therefore 120-160 mm diameter could be sufficient.
- The common pipeline is designed for 710 km and 6.33 Mt of CO_2 flow.

plants) for Estonian-Latvian onshore CCUS scenario

Company	Heidelberg Cement	Energia Energia	(Enefit		VKG Energia	Total for 5 Estoni	Latv- energ o	Total for Estonia n- Latvian scenari o
Plant Parameters	KNC	Eesti PP	Auvere PP	Balti PP	North TPP	an plants	TEC2 PP	
Pipeline distance to common pipeline, km/diameter, mm	9/120	12/2 50	1+12/ 250	19/ 200	3.4/120		25/16 0	
Capital costs for individual pipeline, M€	1.24	2.72	0.72	3.16	0.37	8.21	4.45	12.66
Common part of CO ₂ pipeline, km	615	710	710	710	666		164	710
CAPEX for common pipeline, M€	61.24		603.18 *		83.36	747.78	24.06	771.84
Total pipeline CAPEX, M€	62.48		609.78 *		83.73	755.99	28.51	784.50
Annual pipeline OPEX, M€	0.63		6.1*		0.84	7.56	0.28	7.85

CO₂ compression, injection and monitoring costs

- Recompression using booster pumps will be needed to keep CO_2 in a dense phase when the pressure will drop below 8 Mpa.
- The capital costs of booster pumps is a function of CO_2 flow-rate, and recompression duty is a function of discharge pressure, which is different for various CO_2 flow-rates.
- Considering the average price of electricity in 2019 in Estonia, Latvia and Lithuania, 45 €/per MW was taken for the scenario.
- CO₂ injection costs include: well drilling, storage site facilities and monitoring.
- In total 4 injection and 2 monitoring wells are planned for CO₂ storage and monitoring
- Corring and logging are included for all six wells. Total capital costs for all wells is 17.75 M€.

Company	HCG	Eesti Energia		9	VKG Total for 5		Latvenerg o	Estonian-
Plant Parameters	KNC	Eesti PP	Auvere PP	Balti PP	North PP	Estonian plants	IECZ	Latvian scenario
Total CAPEX for all wells and storage facilities, $M {\ensuremath{\varepsilon}}$	1.46	7.89	1.73	2.45	1.81	15.35	2.39	17.75

- Cost for onshore 3D seismic survey (C) depends on area.
- For our scenario C=0.76 M€, considering 141 km² area of the North Blidene structure, taken for seismic monitoring.
- Baseline monitoring before injection and every year during injection is needed according to the European regulations .
- After closure of CO₂ storage site, it will be done annually during three years and then every five years during 30 years .
- Altogether monitoring should be made and reported 40 times: baseline before injection, 30 (during injection), and 9 (after closure).
- Additional monitoring expenses in monitoring and injection wells could be covered by 40% O&M costs (on-costs).

ramework Programme of the European Unio

CLEAN clinKEE by calciu

Total costs for CO₂ transport and geological storage for 30 years project

Company	ЭЭН	(Eesti Energia Enefit Energia)	VKG Energia	Total for 5 Eştonian	Latvenergo	Total for Estonian-
Plant Parameters	KNC	Eesti PP	Auvere PP	Balti PP	North TPP	plants	TEC2 TPP	Latvian scenario
CO ₂ injected per year, Mt	0.52	2.81	0.62	0.87	0.65	5.47	0.85	6.37
TPC (Total Plant Cost), M€	81.68		793.26*		109.19	984.14	40.39	1024.55
CAPEX, €/tCO ₂ injected	13.87		16.22*		14.91	15.82	4.16	14.14
OPEX total (40% from BEC), M€	25.83		250.83*		34.53	311.19	12.77	323.97
OPEX, €/tCO ₂ injected	3.98		4.66*		4.28	4.55	1.20	4.07
MVEX (annual monitoring and verification cost), M€	0.09	0.49	0.11	0.15	0.11	0.95	0.15	1.09
MVEX, €/tCO ₂ injected	0.17	0.18	0.17	0.17	0.17	0.18	0.17	0.17
ENEREX (annual energy cost for boosters), M€	0.0002	0.0012	0.0003	0.0004	0.0003	0.0023	0.0004	0.0027
ENEREX, €/tCO ₂ injected	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004
COSTtotal, €/tCO ₂ injected	18.02		21.06*		19.36	20.54	5.54	18.38

CI -AN clinKFE by calciu looping for ow-C3, cem	ent
••	•

Mineral Carbonation Plant at Eesti Power Plant:

- 110 kg of CO₂ /t OSA
- 250 kg of PCC (precipitated CaCO₃) from one t OSA
- 0.42 Mt CO2+3.8 Mt OSA= 0.95 Mt PCC/year

Revenues

- avoided EEAP 40 Euro/t CO₂
- 3 €/t OSA for OSA disposal
- 50 €/t PCC

Mineral Carbonation Costs 15 €/t CO2 (Reddy et al, 2010, Christensen, 2010) Annually 0.42Mt*15€=6.3 M€ OSA will be transported from Auvere PP (1 km) and Balti PP (20.9 km) to MC plant (at Eesti PP). Transport by trucks: 0.07 Euro per km per/t of **OSA** Annual transport cost 1.06 M€ Annual revenues: Total annual cost 7.36 M€. PCC production: 47.63 M€ per year **EEAP 40 Euro/t CO₂:16.8 M€** 3 € per t of OSA for OSA disposal: 11.43 M€ Total annual revenues: 75.86 M€

Revenues – Costs = 69.56 M€

Techno-economic modelling of the Baltic CCUS onshore scenario

Total economic results for CO₂ use, transport and storage scenario (* total for 3 Eesti Energia plants)

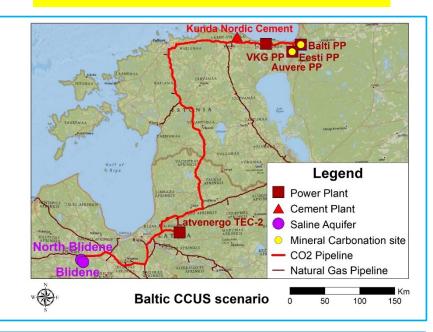
Company	Heidel- berg Cement	Eesti Energia (Enefit Energia)			VKG Energia	Total for 5 Estonian plants	Latv- energo	Total for Estonian- Latvian scenario
Plant	КМС	Eesti PP	Auvere PP	Balti PP	North PP		TEC2 PP	
COSTtotal (T&S), €/t CO ₂	18.02		21.06*		19.36	20.54	5.54	18.38
Balance per one year (revenues-costs), M€	-4.94		24.2*		-5.69	14.47	3.77	18.44
EEAP needed for zero balance, €/t CO ₂	48.0				49.4			

CLEAN clinKEE by calcium looping for low-CO, cement

CLEA

- The Estonian-Latvian transboundary CCUS scenario includes cluster of six largest CO₂ producers in 2019, including one cement plant from Estonia and five PPs from Estonia and Latvia. One cement and three energy companies were involved in the scenario, which includes CO₂ use for Mineral Carbonation of Estonian OSA and production of high quality Precipitated Calcium Carbonate.
- Annually 6.8 Mt CO₂ could be captured, transported and injected, including 6 Mt CO₂ avoided using transport and storage and 0.42 Mt avoided using MC of Estonian OSA. During 30 years nearly 204 Mt CO₂ will be captured, used and stored, while 193 Mt CO₂ could be avoided.
- CCUS scenario includes CO2 use of 0.47 Mt CO₂ produced at Eesti PP and using 3.8 Mt of fresh OSA produced during combustion of OS at three Eesti Energia PP. OSA will be transported from Auvere and Balti PPs to MC plant using trucks.
- 4. 6.4 Mt of captured and compressed CO₂ were planned to be transported annually for onshore CO₂ storage site in Latvia (North Blidene) via pipelines. Small pipelines of 120-250 mm diameter from plants and one large common pipeline of 710 km length and diameter of about 700 mm were planned to be built during two years of construction period.

Mineral Carbonation Plant at Eesti Power Plant:

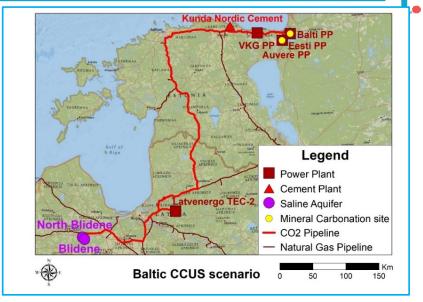

OLEAN clinKEE by calcium looping for low-CO, cemer

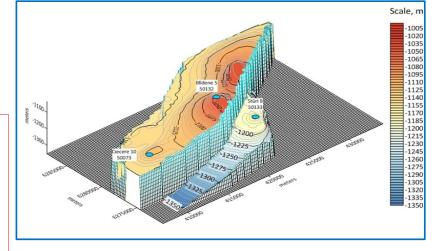
ER

- 110 kg of CO₂ /t OSA
- 250 kg of PCC (precipitated CaCO₃) from one t OSA
- 0.42 Mt CO2+3.8 Mt OSA= 0.95 Mt PCC/year

Revenues

- avoided EEAP 40 Euro/t CO₂
- 3 €/t OSA for OSA disposal
- 50 €/t PCC


Framework Programme of the European Unio


Conclusions

- 5. CO₂ injection into the 50 m thick Cambrian Series 3 Deimena Formation reservoir sandstones at the depth of 1035-1150 m with 370-850 mD permeability was planned including four injection and two monitoring wells. Monitoring program included baseline research before injection and had to be repeated according to EU CCS regulations every year, and in the postinjection period during 30 years (in total 40 monitoring campaigns).
- 6. The total average transport and storage cost of the scenario is $18.4 \notin tCO_2$ injected. This cost depends on the transport distance, according to the applied methodology, and it is the most expensive for the Eesti Energia PPs. The lowest T&S cost of 5.54 €/tCO₂ injected will have Latvenergo TEC2 PP located at the smaller distance from storage site.

7. At the present EEAP reaching already 96 \in /t CO2 in July 2022, all the participating plants will get benefits from the proposed scenario.

https://ember-climate.org/data/carbon-priceviewer/

BCF2022 - Kaunas, 13-14 October

20

CLEAN clinKEE by calcium Inoping for low-CO, cement

CLEA

KER

ramework Programme of the European Unio

References

- Christensen MH. An economic analysis of the Jim Bridger power plant CO2 mineralization process. Master's thesis, Dept. of Agricultural and Applied Economics, University of Wyoming; 2010. •
- EC. Directive 2009/31/EC of the European Parliament and of the Council of 23 April 2009 on the geological storage of carbon dioxide and amending Council Directive 85/337/EEC, European Parliament and Council Directives 2000/60/EC, 2001/80/EC, 2006/12/EC, 2008/1/EC and Regulation (EC) No 1013/2006 (1). Official Journal of the European Union 2009; L140:114-35.
- EDGAR. Fossil CO2 emissions of all world countries, 2020 report; EC 2020.
- Eesti põlevkivitööstuse aastaraamat 2019; 2019:1-34.
- EPRI. Electric Power Research Institute, Inc. Australian Power Generation Technology Report; 2015. 362 pp.
- EU ETS. EU Emission Trading System. <u>http://ec.europa.eu/environment/ets/</u>; 2020.
- Kunda Nordic Tsement; 2020, https://www.knc.ee/et.
- Reddy KJ, Weber H, Bhattacharyya P, Argyle M, Taylor D, Christensen M, *et al. 2010.* Instantaneous capture and mineralization of flue gas carbon dioxide: pilot scale study. Available from Nature Precedings 2010, <u>10.1038/npre.2010.5404.1</u>
- Shogenova A, Shogenov K, Ivask J. Regional and national regulations, gaps and recommendations for CCUS scenarios. Deliverable 7.3 of the Horizon 2020 CLEANKER project N 764816; 2018. p. 1–72.
- Shogenova A, Shogenov K, Pomeranceva R, Nulle I, Neele F. and Hendriks C. Economic modelling of the capture-transport-sink scenario of industrial CO2 emissions: the Estonian–Latvian crossborder case study. Elsevier, Energy Procedia 4; 2011: 2385-2392.
- Shogenova A, Shogenov K. Definition of a methodology for the development of a techno-economic study for CO2 transport, storage and utilization. Deliverable D7.1 of the Horizon 2020 CLEANKER project; 2020:1-56.
- Shogenova A, Uibu M, Gastaldi D, Shogenov K, Canonico F, Trikkel A, Kuusik R, Ivask J, Cinti G, Simmer K. Transport, utilization and storage of CO2 emissions produced by cement industry: CCUS study of the CLEANKER project. 14th Greenhouse Gas Control Technologies Conference Melbourne 21-26 October 2018 (GHGT-14). SSRN 2019;1-9.
- Shogenova, A., Shogenov, K., Uibu, M., Kuusik, R- and Simmer, K. and Canonico, F. Techno-economic Modelling of the Baltic CCUS Onshore Scenario for the Cement Industry Supported by CLEANKER Project (2021). SSRN: <u>https://ssrn.com/abstract=3817710</u> or <u>http://dx.doi.org/10.2139/ssrn.3817710</u>, 2021; 1-13.
- Simmer K, Estonian-Latvian Transboundary Carbon Dioxide Capture, Transport and Storage (CCS) Scenario for the Cement Industry. Master Thesis. Tallinn University of Technology; 2018:1-48.
- Uibu M, Kuusik R. Main physicochemical factors affecting the aqueous carbonation of oil shale ash. Minerals Engineering 2014;59:64–70.
- Uibu M, Tamm K, Velts-Jänes O, Kallaste P, Kuusik R, Kallas J. Utilization of oil shale combustion wastes for PCC production: Quantifying the kinetics of Ca(OH)2 and CaSO4·2H2O dissolution in aqueous systems. Fuel Processing Technology 2015;140:156-164.
- Uibu M, Usta MC, Tamm K, Žuravljova A, Kallas J, Kuusik R, Trikkel A. Mineral Trapping of CO2 for Cement Industry De-Carbonization, 2019, 14th Greenhouse Gas Control Technologies Conference Melbourne 21-26 October 2018 (GHGT-14). SSRN 2019: 1-8.
- Vangkilde-Pedersen T, Allier D, Anghel S, Bossie-Cordreanu D, Car M, et al. Project no SES6-518318, EU GeoCapacity, Assessing European Capacity for Geological Storage of Carbon Dioxide, D16, WP2 Report, Storage Capacity; 2009:1 166.
- Velts O, Uibu M, Kallas J, Kuusik R. Waste oil shale ash as a novel source of calcium for precipitated calcium carbonate: Carbonation mechanism, modeling, and product characterization. Journal of Hazardous Materials 2011; 195, 139–146. DOI: 10.1016/j.jhazmat.2011.08.019
- VKG Viru Keemia Grupp; 2021. <u>https://www.vkg.ee/en/</u>.
- Wikipedia. Narva Power Plants. 2020. <u>https://en.wikipedia.org/wiki/Narva_Power_Plants</u>

OLEAN clinKEE by calcium looping for low-CO, cement

CLEA

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement n. 764816

This work is supported by the China Government (National Natural Science Foundation of China) under contract No.91434124 and No.51376105

<u>www.cleanker.eu</u> <u>Twitter: @CLEANKER_H2020</u> LinkedIn: www.linkedin.com/company/14834346

Disclaimer: The European Commission support for the production of this publication does not constitute endorsement of the contents which reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein

CLEAN clinKEE by calcium looping for low-CO, cemen